NASA~CR-199089 NC/C/’BIBOY

Genetic Algorithm based Input Selection for a Neural Network N
Function Approximator with Applications to SSME Health 6753 %
Monitoring /’ 4

Charles C. Peck and Atam P. Dhawan Claudia M. Meyer
Dept. of Electrical and Computer Engineering Sverdrup Technology, Inc.
University of Cincinnati Cincinnati, OH 45221 NASA Lewis Research Center Group
Brook Park, OH 44142

ABSTRACT

A genetic algorithm is used to select the inputs to a neural network function approximator. In
the application considered, modeling critical parameters of the Space Shuttle Main Engine (SSME), the
functional relationship between measured parameters is unknown and complex. Furthermore, the number
of possible input parameters is quite large. Many approaches have been used for inpnt selection, but they
are either subjective or do not consider the complex multivariate relationships between parameters. Due
the optimization and space searching capabities of genetic algorithms they were employed in this paper
to systematize the input selection process. The results suggest that the genetic algorithm can generate
parameter lists of high guality without the explicit use of problem domain knowledge. Suggestions for
improving the performance of the input selection process are also provided.

L INTRODUCTION

There is considerable interest within the space industry in improving the fault detection and isolation
capabilities of rocket engine condition monitoring and post-test diagnostic processing systems. This requires
developing accurate models of engine parameters based on other parameters measured from the engine.
Developing accurate models is particularly difficult due to the highly complex, non-linear nature of rocket
engines, the limited suite of measured parameters, and the large variability of behavior among engines of
the same design.

It has been shown that neural networks with one hidden layer can uniformly approxunate any continuous
function [1, 2, 3]. Furthermore, neural networks are well-suited for problems in which the exact relationships
between inputs and outputs are complex or unknown [4, 1}. These conclusions may be applied to dynamical
systems if the system state is sufficiently represented in the inputs of the neural network. For these reasons,
feedforward neural networks have been used to model critical parameters of the Space Shuttle Main Engine
(SSME) during the start-up transient and they have been shown to be quite effective [4].

A task that is critical to the success of neural network modeling of complex, dynamical systems such as
the SSME is the choice of the iput parameters. There are several constraints that complicate this task.
First, while the instrumnentation of the SSME is extensive, it is not complete. Therefore, it is unlikely that
it will be possible to completely describe any subsystem input or output. Second, as was discussed above, it
is necessary to provide enough state information to model the desired parameter. Finally, it is not practical
to use a large number of inputs for a number of reasons. First, a time window of each input parameter is
typically used in order to provide tune dependent information. The size of the window multiplies the number
inputs to the network. For example. if 10 parameters are chosen as the network inputs and a time window of
the past ten values is used, then the effective number of inputs to the network is 100. Another reason that
the input set should be restricted is that large networks are difficult to train. Finally, the input set should

be small if the system is to be used for real-time modeling.

A number of ad hoc approaches have been proposed or used for input selection. These include the use
of characteristic equations, engine schematic analysis, correlations between candidate input parameters and
the modeled parameter, and expert advice. These methods are highly subjective or they do not adequately
measure the multivariate dependencies present in the system. For these reasons, a systematic approach for
input selection is desired.

The choice of inputs may be modeled as an optimization problem where the space of possible solutions
is quite large. In fact, roughly 500 sensors are used for monitoring during test firings of the SSME. This
represents approximately 2590 distinct input sets. Since an exhaustive search is clearly not possible, an
alternative search method is required.

Genetic algorithms are well suited for searching in a large parameter space {5, 6]. Through the use of
seeding (the process of providing an initial set of possible solutions), genetic algorithms search from a set of
solutions or starting points, rather than a single starting point. Genetic algorithms are not derivative based,
thus they can search spaces where methods such as conjugate descent fail. They work with both discrete
and continuous parameters, and explore and exploit the parameter space (7]. Furthermore, through the use
of elitism (a variant method in which the best solution of a generation is promoted unaitered to the next
generation), a genetic algorithm can be guaranteed to perform at least as well the methods used to seed or
initialize it. For these reasons, a genetic algorithm was used in this paper to select the inputs to a neural
network used for SSME parameter modeling during the start-up transient.

This paper will first present the design issues and methodology applied to the selection of SSME input
parameters. A presentation and discussion of results will follow. The paper will conclude with the conclusions
and ideas for future work.

I1. DESIGN ISSUES AND METHODOLOGY

The design issues range from those applicable to all genetic algorithms and multi-layered perceptron
neural networks to those specific to this particular problem of SSME parameter approximation.

There are two fundamental design requirements for applying genetic algorithms: encoding candidate
solutions onto binary strings, and developing a fitness function. In this case, encoding candidate solutions
onto binary strings is trivial since a single bit is sufficient to indicate whether a particular parameter is to be
included in the network input set. Accordingly, the string, or chromosome, has one bit for every candidate
engine parameter. To reduce the size of the search space, redundant sensor measurements were eliminated
and those parameters believed to be nearly independent of the modeled parameter were not included in the
candidate parameter set. This reduced the size of the candidate parameter set to 49 parameters. Before
discussing the development of the fitness function, it should be noted that in the genetic algorithm used, the
smaller the fitness function value, the better the evaluated solution is considered to be.

The choice of a fituess function is somewhat more complicated than the string encoding. Recall that
the primary function of the genetic algorithm is to produce input sets that enable neural network function
approximators to accurately learn and generalize the relatiouships between the modeled parameter and the
input parameters. One way to do this is to make the fitness function proportional to the neural network
training error. Adding the input set size constraint. to the fitness function could be done simply by multiplying
the training error by the number of parameters selected. This results in a very strong constraint, however.
The strength of the size constraint can be controlled by adding a constant to the number of parameters
selected. A small offset created in this nanner yields a strong size constraint, whereas a large offset yields a
weak one. The fitness function may be further tweaked by squaring the size constraint term. This increases
the strength of the coustraint as the nunber of parameters increases.

The additional need to minimize the number of inputs to the network and the disparity in the size
between heuristically and randomly selected seeding sets are primarily respousible for the added complexity
of the fitness function. The heuristically selected seeding sets cousist of approximately 10 parameters, while
the randomly selected seeding sets consist of approximately 206 parameters. If the two seeding sets were
approximately the same size, au offset could be chosen that would yield the desired input set size at the

end of the evolution process. This size disparity, however. results in either a strongly biased choice of input
parameters or it results in input sets that are too large. To see this, consider the use of an offset sufficient
to reduce the randomly selected seeding sets to a target size of 8 parameters. Due to the size disparity,
the heuristically selected seeding sets would have considerably lower fitness function values and would thus
dominate in successive generations. Conversely, the use of an offset that does not significantly favor the
heuristically selected seedings may not significantly reduce the size of the parameter lists.

For the work presented in this paper, generation dependent offsets were used to avoid biasing the results
while ensuring satisfaction of the size constraint. Initially, the offset was set very high to allow the candidate
solutions to compete primarily on the basis of the training error. As the genetic algorithm proceeded, the
size constraint was made progressively stronger. By the end of the genetic algorithm the offset was small,
yielding a strong bias for shorter lists. This change of offset with respect to the generation will be referred
to as an offset progression. Two offset progressions were used: one yielding a generally weak size constraint,
and another yielding a generally strong size constraint. The offset progression yielding the weaker size
constraint ranged from 71 initially to 14 over 20 generations. The other ranged from 45 initially to 7 over
20 generations. The resulting fitness functions are shown in Equations 1 and 2, respectively:

(c+ 71 - 3G)*

f= 130 x Training Error, (1)
— 902
f= (et 45— 26)7 Training Error, (2)

(45 — 2G)*
where f is the fitness function value, ¢ is the number of parameters in the candidate input list, and G, which
ranges from 0 to 19, is the generation number.

To ensure robustness and resistance to domination by “Super Individuals” (i.e., non-optimal solutions
that are significantly more fit than other solutions early in the evolution process), the evolutionary process
was designed to run in two stages. In the first stage, three populations were independently evolved. These
populations were used to seed a second evolutionary stage. In the first stage, fitness functions with weaker
size constraints were used. This favors lower training error. In the second stage, the fitness function with
the stronger size constraint was used.

To further increase diversity within the “gene pool,” the fitness functions in two of the first stage genetic
algorithms were varied to favor either early or late convergence of the neural network training error. The
method used to implenient these biases exploits the observation that the training error consistently remained
on a high plateau before falling precipitously, as shown in Figure 1. Since oscillations and unusual patterns
in the training error were not observed, integration of the area bounded by the error curve and a bounding
rectangle could be performed. To favor early convergence, the fitness function in Equation 1 was multiplied
by the area of integration normalized by the area of the bounding box. If A, B, and C denote the normalized
areas of their corresponding regions in Figure 1, the shape dependent fitness term is A for the early training
error curve and A + B for the late training error curve. To favor late convergence, the normalized area of
integration is first subtracted from 1 before multiplying Equation 1. This corresponds to a shape dependent.
fitness term of B + C for the early training error curve and (for the late training error curve.

As described above, the fitness function evaluation involves creating a neural network. training it, and
evaluating its performance. This is computationally expensive and time consuming. To limit the cost of
performing this operation, the QuickProp learning algorithm was used [8]. Furthermore, the network was
trained only as far as necessary to distinguish it from other networks with different input configurations.
It was determined empirically that 100 epochs is sufficient. According to the analysis provided in (8],
this should be comparable to 1000 epochs of training with standard backpropagation. Finally, the neural
networks were presented with a time window of 5 past values instead of the 10 past values used in [4].

Another important design consideration is that the training error of a network is a noisy fitness evaluation
function. The weight initializatiou cau have a significant effect on the performance of a network. Thus, to
avoid biasing the fitness of a particular candidate set of inputs as either too good or too bad, the fitness of
each candidate input set. was evaluated every generation in which it was present.

III. RESULTS AND DISCUSSION

bounding box

Training Error

Epochs

Figure 1. Early versus Late Training Error Convergence

Table 1: Parameter Lists

Parameter | Number Parameters
List of PIDs
GA-1 6 21 58 209 734 951 1050
GA-2 7 21 58 209 327 734 951 1058
GA-3 8 21 52 58 209 327 734 951 1050
REF 9 40 42 59 231 480 1205 1212 O/Cs OPBs

The fundamental output of the system described above consists of candidate parameter lists. The three
parameter lists with the best fitness values are presented in Table 1. These three lists are labeled GA-1-
GA-3. An additional list, labeled REF, is also presented for the purpose of comparison. This “reference”
list has been modified from the one presented in [4] to exclude autoregressive information.

The parameter that was modeled is the SSME’s High Pressure Oxidizer Turbine (HPOT) discharge
temperature, which has a Parameter IDentification number (PID) of 233. Descriptions of this PID and the
others included in the four lists described above are provided in Table 2.

To evaluate the performance of the parameter lists produced by the genetic algorithms, feedforward
neural networks were fully trained using these lists and the reference list. The resulting networks were then
used to approximate PID 233 using measured parameters from 12 actual SSME test firings. Four of the
test firings were used for training the networks and eight were used to validate the resulting models. The
results, as represented by the mean squared error (MSE), the normalized MSE, and the maximum percent
error, are shown in Tables 3, 4, 5. and 6. A summary of these results 1s presented in Tables 7 and 8. The
results are divided into two groups: one presenting the aggregate performance of the networks on the tramnng
data (Table 7), and the other presenting the aggregate performance of the networks on the validation data

(Table 3).

It is clear from the results that the parameter list GA-1 has the worst error performance of the four lists.
This is compensated by the fact that this is the shortest parameter list. Even though the error performance
of this parameter list is the worst. it is still close to the performance of the other lists, including the reference
list.

The parameter lists GA-2 and GA-3 outperformed the reference list on the training data and performed

only slightly worse than the reference list on the validation data. Due to the large standard deviations of
validation data error, the differences in the error means cannot be considered statistically significant.

Table 2: Parameter Descriptions

PID Description

21 Main Combustion Chamber Oxidizer Injection Temperature
40 Oxidizer Preburner Oxidizer Valve Actuator Position

42 Fuel Preburner Oxidizer Valve Actuator Position

52 High Pressure Fuel Pump Discharge Pressure

58 Fuel Preburner Chamber Pressure

59 Preburner Boost Pump Discharge Pressure

209 High Pressure Oxidizer Pump Inlet Pressure

231 High Pressure Fuel Turbine Discharge Temperature

2331 High Pressure Oxidizer Turbine Discharge Temperature

327 High Pressure Oxidizer Pump BalCav

480 Oxidizer Preburner Chamber Pressure

734 Low Pressure Oxidizer Pump Speed

951 High Pressure Oxidizer Pump Pressure SL DR

1050 Oxidizer Tank Discharge Temperature

1058 Engine Oxidizer Inlet Temperature

1205 FAC Fuel Flow

1212 FAC Oxidizer Flow

0/Cs | Dummy Parameter indicating Open/Closed Loop Operation
OPBs | Dummy Parameter indicating Oxidizer Preburner Prime Time

t the modeled parameter

Table 3: Error Statistics from Parameter List GA-1

Test Trainmg/ MSE NMSE Max.
Firing | Validation % Error
B1046 T 3.787033 | 0.000322 | 2.2330
B1060 T 14.743364 | 0.001223 | 4.8150
B1061 \ 20.168583 | 0.001657 | 10.4348
B1062 A 34.029559 | 0.002832] 9.6225
B1063 A% 39.671779 | 0.003301 | 6.9063
B1066 \'% 30.608499 | 0.002532 [7.5330
B1U6GT Vv 42.103255 | 0.003498 | 9.2189
B1070 T 11.699498 | 0.000945 | 3.1922
B1071 Vv 63.607371 | 0.005154 | 20.8187
B1072 Vv 23.816642 | 0.001898 | 8.3420
B1O7T5 Vv 20.268258 | 0.001669 [10.0018
B1077 T 12.931541 | 0.001045 | 5.3681

Table 4: Error Statistics from Parameter List GA-2

Test | Training/ MSE NMSE Max.
Firing | Validation % Error
B1046 T 3.341027 | 0.000284 | 2.0253
B1060 T 6.059692 | 0.000503 | 3.1339
B1061 \' 19.080619 | 0.001568 | 5.9461
B1062 \% 37.601837 { 0.003129 | 9.9597
B1063 \'% 35.212338 | 0.002930 | 6.6999
B1066 \ 33.799122 1 0.002796 | 7.3425
B1067 A% 36.724494 | 0.003051 | 7.9440
B1070 T 10.692421 | 0.000864 | 3.6021
B1071 \% 48.479267 | 0.003929 | 15.9965
B1072 A% 17.781945 { 0.001417 | 5.1814
B1075 \% 35.017457 | 0.002884 | 11.4959
B1077 T 7.973934 | 0.000644 | 2.6040
Table 5: Error Statistics from Parameter List GA-3

Test | Training/ MSE NMSE Max.
Firing | Validation % Error
B1046 T 4.015642 | 0.000341 { 1.7042
B1060 T 6.114787 | 0.000507 | 2.5343
B1061 \% 20.477665 | 0.001682 | 6.2484
B1062 % 40.542411 | 0.003374 | 10.5837
B1063 \'% 38.320758 | 0.003188 | 7.134Y
B1066 \% 38.782970 1 0.003208 | 8.8021
B1067 \ 39.245907 | 0.003261 | 8.4381
B1070 T 10.516996 | 0.000850 | 3.2462
B1071 \'% 53.008396 | 0.004296 | 18.9413
B1072 A% 17.990471 | 0.001434 | 4.7040
B1075 % 33.172788 | 0.002732 | 12.0369
B1077 T 6.889614 | 0.000557 | 2.3684

Table 6: Error Statistics from Parameter List REF

Test | Training/ MSE NMSE Max.
Firing | Validation % Error
B1046 T 6.652181 | 0.000565 | 3.8462
B1060 T 7.375382 | 0.000612 | 3.0370
B1061 \% 22.370471 | 0.001838 | 4.8509
B1062 Vv 23.747774 | 0.001976 | T7.2832
B1063 A% 28.076726 | 0.002336 | 7.9618
B1066 v 16.538060 | 0.001368 | 7.6115
B1067 A% 20.482848 | 0.001702 | 6.6011
B1070 T 6.588053 | 0.000532 | 3.8668
B1071 A% 50.654580 | 0.004105 | 11.0878
B1072 A 42.897089 | 0.003419 | 6.7544
B1075 \% 25.213499 | 0.002077 | 9.444Y
B10O77 T 7.809484 | 0.000631 | 4.5456

Table 7: Summary of Parameter List Performance on Training Data

Parm. MSE NMSE Max.

List I a i o u o
GA-1 | 10.790359 | 4.833357 | 0.000884 | 0.000392 | 3.902086 | 1.445958
GA-2 | 7.016768 | 3.101272 | 0.000574 | 0.000244 | 2.841333 | 0.67982Y
GA-3 | 6.884260 | 2.709112 | 0.000564 | 0.000212 | 2.463281 | 0.633292
REF | 7.106275 | 0.589258 | 0.000585 | 0.000045 | 3.823920 | 0.617108

Table 8: Summary of Parameter List Performauce on Validation Data

Parm. MSE NMSE Max.

List Jt a % a i o
GA-1 | 34.284241 | 14.485731 | 0.002818 | 0.001180 | 10.359750 | 4.397353
GA-2 | 32962132 | 10.068242 | 0.002713 | 0.000832 | 8.820735 | 3.563816
GA-3 | 35.192673 | 11.349328 | 0.002897 | 0.000937 | 9.611175 | 4.430940
REF | 28.7476G31 | 11.808645 | 0.002353 | 0.000932 | 7.699442 | 1.889502

It should be noted that the heuristically chosen parameter lists that were used to seed the genetic
algorithms were outperformed early in the process by genetic algorithm generated parameter lists. While
the behavior and results of the genetic algorithm were certainly affected by the heuristically chosen parameter
sets, the guidance provided by these sets did not appear to be strong.

Iv. CONCLUSIONS AND FUTURE WORK

The results indicate that the error performance of the genetic algorithm generated parameter lists was
roughly the same as that of the reference list. Furthermore, in all cases, the genetic algorithm generated
parameter lists were smaller than the reference list. Thus, the genetic algorithm was able to systematically
generate parameter lists that performed well without. the explicit use of problem domain knowledge.

Many improvements for the input selection process have been envisaged. One may, for example, modify
the fitness evaluation function to be dependent on the error on a validation set instead on the training. This
would favor parameter lists that yield networks with superior generalizing capabilities instead of lists that
yield networks capable of rapid learning. As an extension, the fitness function could be made a function
of the training error, the validation error, and the generation. In this manner, learning capability could be
favored early in evolution and generalization could be favored later.

As demonstrated by the GA-1 list, smaller size can be overemphasized compared to the error performance.
Instead of favoring a parameter list of the smallest size, a list of a particular size could be favored. This would
favor the inclusion of sufficient information while discouraging the use of parameters that do not significantly
improve the error performance. For this particular application, a size of 10 would be reasonable.

V. ACKNOWLEDGMENTS

The public domain genetic algorithm GENESIS Version 5.0, written by John J. Grefenstette, was used
for the work described in this paper. Furthermore, the fitness evaluation function is a highly modified and
optimized derivative of Terry Regier’s implementation of the QuickProp training algorithm.

VI REFERENCES
(1) S. Chen, S. A. Billings, and P. M. Grant. Non-linear systems identification using neural networks.
Research Report 370, University of Edinburgh, Mayfield Road, Edinburgh, Scotland, August 1989.

[2] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals,
and Systems, 2:303-314, 1989.

[3] K. Funahashi. On the approximate realization of continuous mappings by neural networks. Neural
Networks, 2:183-192, 1989.

[4] Claudia M. Meyer and William A. Maul. The application of neural networks to the ssme startup transient.
Number 2530 in 91. AIAA, July 1991.

[5] David E. Goldberg. Genetic Algorithms in Search, Optamization, and Machine Learning. Addison-Wesley
Publishing Company, Inc., Reading, Massachusetts, 1989.

[6] Lawrence Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York, 1991.

(7] David J. Powell, Michael M. Skolnick, and Siu Shing Tong. Handbook of Genetic Algorithms, chapter 20,
pages 312-331. Van Nostrand Reinhold, New York, 1991.

[8] Scott E. Fahlman. Faster-learning variations on back-propagation: An empirical study. In D. Touretzky,
G. Hinton, and T. Sejnowski, editors, Proceedings of the 1988 Comnectionist Models Summer School,
pages 3851, San Mateo, CA, June 1988. Carnegie Mellon University, Morgan Kaufmann Publishers.

